Sliding Surface Designs for Visual Servo Control of Quadrotors

Author:

Yuksel Tolga1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Engineering Faculty, Bilecik Seyh Edebali University, Bilecik 11200, Turkey

Abstract

Autonomy is the main task of a quadrotor, and visual servoing assists with this task while providing fault tolerance under GPS failure. The main approach to visual servoing is image-based visual servoing, which uses image features directly without the need for pose estimation. The classical sliding surface design of sliding mode control is used by the linear controller law of image-based visual servoing, and focuses only on minimizing the error in the image features as convergence. In addition to providing convergence, performance characteristics such as visual-feature-convergence time, error, and motion characteristics should be taken into consideration while controlling a quadrotor under velocity limitations and disturbance. In this study, an image-based visual servoing system for quadrotors with five different sliding surface designs is proposed using analytical techniques and fuzzy logic. The proposed visual servo system was simulated, utilizing the moment characteristics of a preset shape to demonstrate the effectiveness of these designs. The stated parameters, convergence time, errors, motion characteristics, and length of the path, followed by the quadrotor, were compared for each of these design approaches, and a convergence time that was 46.77% shorter and path length that was 6.15% shorter were obtained by these designs. In addition to demonstrating the superiority of the designs, this study can be considered as a reflection of the realization, as well as the velocity constraints and disturbance resilience in the simulations.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3