Design and performance analysis of different cambered wings for flapping-wing aerial vehicles based on wind tunnel test

Author:

Zhao Min,He Wei,He Xiuyu,Zhang Liang,Zhao Hongxue

Abstract

Purpose Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the flapping wings are crucial for the flight performance. The aim of this paper is to study the effects of different wings on aerodynamic performance. Design/methodology/approach Inspired by the wings structure of birds, the authors design four cambered wings to analyze the effect of airfoils on the FWAVs aerodynamic performance. The authors design the motor-driven mechanism of flapping wings, and realize the control of flapping frequency. Combined with the wind tunnel equipment, the authors build the FWAVs force test platform to test the static and dynamic aerodynamic performance of different flapping wings under the state variables of flapping frequency, wind speed and inclined angle. Findings The results show that the aerodynamic performance of flapping wing with a camber of 20 mm is the best. Compared with flat wing, the average lift can be improved by 59.5%. Originality/value Different from the traditional flat wing design of FWAVs, different cambered flapping wings are given in this paper. The influence of airfoils on aerodynamic performance of FWAVs is analyzed and the optimal flapping wing is obtained.

Publisher

Emerald

Reference49 articles.

1. Bioinspired feathered flapping wing UAV design for operation in gusty environment;Journal of Robotics,2021

2. The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors;Canadian Journal of Zoology,2015

3. A novel actuation strategy for an agile bioinspired FWAV performing a morphing-coupled wingbeat pattern;IEEE Transactions on Robotics,2022

4. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot;Science Robotics,2017

5. Efficient flapping wing drone arrests high-speed flight using post-stall soaring;Science Robotics,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3