Conductive hydrogels‐based self‐sensing soft robot state perception and trajectory tracking

Author:

Ma Jie12,Han Zhiji12,Li Mingge3,Liu Zhijie12,He Wei12,Ge Shuzhi Sam4

Affiliation:

1. School of Intelligence Science and Technology University of Science and Technology Beijing Beijing China

2. Key Laboratory of Intelligent Bionic Unmanned Systems, Ministry of Education University of Science and Technology Beijing Beijing China

3. School of Mechanical Engineering University of Science and Technology Beijing Beijing China

4. Department of Electrical and Computer Engineering and Institute for Functional Intelligent Materials National University of Singapore Singapore Singapore

Abstract

AbstractSoft robots face significant challenges in proprioceptive sensing and precise control due to their highly deformable and compliant nature. This paper addresses these challenges by developing a conductive hydrogel sensor and integrating it into a soft robot for bending angle measurement and motion control. A quantitative mapping between the hydrogel resistance and the robot's bending gesture is formulated. Furthermore, a nonlinear differentiator is proposed to estimate the angular velocity for closed‐loop control, eliminating the reliance on conventional sensors. Meanwhile, a controller is designed to track both structural and nonstructural trajectories. The proposed approach integrates advanced soft sensing materials and intelligent control algorithms, significantly improving the proprioception and motion accuracy of soft robots. This work bridges the gap between novel material design and practical control applications, opening up new possibilities for soft robots to perform delicate tasks in various fields. The experimental results demonstrate the effectiveness of the proposed sensing and control approach in achieving precise and robust motion control of the soft robot.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3