Motion control design for unmanned ground vehicle in dynamic environment using intelligent controller

Author:

Almayyahi Auday,Wang Weiji,Hussein Alaa Adnan,Birch Phil

Abstract

Purpose The motion control of unmanned ground vehicles (UGV) is a challenge in the industry of automation. The purpose of this paper is to propose a fuzzy inference system (FIS) based on sensory information for solving the navigation challenge of UGV in cluttered and dynamic environments. Design/methodology/approach The representation of the dynamic environment is a key element for the operational field and for the testing of the robotic navigation system. If dynamic obstacles move randomly in the operation field, the navigation problem becomes more complicated due to the coordination of the elements for accurate navigation and collision-free path within the environmental representations. This paper considers the construction of the FIS, which consists of two controllers. The first controller uses three sensors based on the obstacles distances from the front, right and left. The second controller employs the angle difference between the heading of the vehicle and the targeted angle to obtain the optimal route based on the environment and reach the desired destination with minimal running power and delay. The proposed design shows an efficient navigation strategy that overcomes the current navigation challenges in dynamic environments. Findings Experimental analyses are conducted for three different scenarios to investigate the validation and effectiveness of the introduced controllers based on the FIS. The reported simulation results are obtained using MATLAB software package. The results show that the controllers of the FIS consistently perform the manoeuvring task and manage the route plan efficiently, even in a complex environment that is populated with dynamic obstacles. The paper demonstrates that the destination was reached optimally using the shortest free route. Research limitations/implications The paper represents efforts toward building a dynamic environment filled with dynamic obstacles that move at various speeds and directions. The methodology of designing the FIS is accomplished to guide the UGV to the desired destination while avoiding collisions with obstacles. However, the methodology is approached using two-dimensional analyses. Hence, the paper suggests several extensions and variations to develop a three-dimensional strategy for further improvement. Originality/value This paper presents the design of a FIS and its characterizations in dynamic environments, specifically for obstacles that move at different velocities. This facilitates an improved functionality of the operation of UGV.

Publisher

Emerald

Subject

General Computer Science

Reference22 articles.

1. Adaptive neuro-fuzzy technique for autonomous ground vehicle navigation;Robotics,2014

2. Soft-computing based navigation approach for a bi-steerable mobile robot;Kybernetes,2013

3. Incorporation, characterization, and conversion of negative rules into fuzzy inference systems;IEEE Transactions on Fuzzy Systems,2001

4. Path planning for mobile robots using fuzzy logic controller in the presence of static and moving obstacles,2016

5. Obstacle avoidance in mobile robot using neural network,2011

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3