Analytical and numerical analyses of filling progression and void formation in flip-chip underfill encapsulation process

Author:

Ng Fei Chong,Abas Aizat,Nashrudin Muhammad Naqib,Tura Ali M. Yusuf

Abstract

Purpose This paper aims to study the filling progression of underfill flow and void formation during the flip-chip encapsulation process. Design/methodology/approach A new parameter of filling progression that relates volume fraction filled to filling displacement was formulated analytically. Another indicative parameter of filling efficiency was also introduced to quantify the voiding fraction in filling progression. Additionally, the underfill process on different flip-chips based on the past experiments was numerically simulated. Findings All findings were well-validated with reference to the past experimental results, in terms of quantitative filling progression and qualitative flow profiles. The volume fraction filled increases monotonically with the filling displacement and thus the filling time. As the underfill fluid advances, the size of the void decreases while the filling efficiency increases. Furthermore, the void formed during the underfilling flow stage was caused by the accelerated contact line jump at the bump entrance. Practical implications The filling progression enabled manufacturers to forecast the underfill flow front, as it advances through the flip-chip. Moreover, filling progression and filling efficiency could provide quantitative insights for the determination of void formations at any filling stages. The voiding formation mechanism enables the prompt formulation of countermeasures. Originality/value Both the filling progression and filling efficiency are new indicative parameters in quantifying the performance of the filling process while considering the reliability defects such as incomplete filling and voiding.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3