Dynamic prediction of Indian stock market: an artificial neural network approach

Author:

Goel Himanshu,Singh Narinder Pal

Abstract

Purpose Artificial neural network (ANN) is a powerful technique to forecast the time series data such as the stock market. Therefore, this study aims to predict the Indian stock market closing price using ANNs. Design/methodology/approach The input variables identified from the literature are some macroeconomic variables and a global stock market factor. The study uses an ANN with Scaled Conjugate Gradient Algorithm (SCG) to forecast the Bombay Stock Exchange (BSE) Sensex. Findings The empirical findings reveal that the ANN model is able to achieve 93% accuracy in predicting the BSE Sensex closing prices. Moreover, the results indicate that the Morgan Stanley Capital International world index is the most important variable and the index of industrial production is the least important in predicting Sensex. Research limitations/implications The findings of the study have implications for the investors of all categories such as foreign institutional investors, domestic institutional investors and investment houses. Originality/value The novelty of this study lies in the fact that there are hardly any studies that use ANN to forecast the Indian stock market using macroeconomic indicators.

Publisher

Emerald

Subject

Economics and Econometrics,Philosophy

Reference31 articles.

1. The dynamic relationship between stock market returns and macroeconomic variables: an empirical study from Bangladesh;Journal of Management, Economics, and Industrial Organization,2020

2. Deep learning in finance: prediction of stock returns with long short-term memory networks;Big Data and Machine Learning in Quantitative Investment,2018

3. The relationship between oil prices, the stock market and the exchange rate: evidence from Mexico;The North American Journal of Economics and Finance,2018

4. Stock price prediction using the ARIMA model,2014

5. Selected Indian stock predictions using a hybrid ARIMA-GARCH model,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3