Stock price indices prediction combining deep learning algorithms and selected technical indicators based on correlation

Author:

Ifleh AbdelhadiORCID,El Kabbouri Mounime

Abstract

PurposeThe prediction of stock market (SM) indices is a fascinating task. An in-depth analysis in this field can provide valuable information to investors, traders and policy makers in attractive SMs. This article aims to apply a correlation feature selection model to identify important technical indicators (TIs), which are combined with multiple deep learning (DL) algorithms for forecasting SM indices.Design/methodology/approachThe methodology involves using a correlation feature selection model to select the most relevant features. These features are then used to predict the fluctuations of six markets using various DL algorithms, and the results are compared with predictions made using all features by using a range of performance measures.FindingsThe experimental results show that the combination of TIs selected through correlation and Artificial Neural Network (ANN) provides good results in the MADEX market. The combination of selected indicators and Convolutional Neural Network (CNN) in the NASDAQ 100 market outperforms all other combinations of variables and models. In other markets, the combination of all variables with ANN provides the best results.Originality/valueThis article makes several significant contributions, including the use of a correlation feature selection model to select pertinent variables, comparison between multiple DL algorithms (ANN, CNN and Long-Short-Term Memory (LSTM)), combining selected variables with algorithms to improve predictions, evaluation of the suggested model on six datasets (MASI, MADEX, FTSE 100, SP500, NASDAQ 100 and EGX 30) and application of various performance measures (Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error(RMSE), Mean Squared Logarithmic Error (MSLE) and Root Mean Squared Logarithmic Error (RMSLE)).

Publisher

Emerald

Subject

Water Science and Technology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics,General Biochemistry, Genetics and Molecular Biology,General Business, Management and Accounting,General Computer Science,General Medicine,General Environmental Science,Education

Reference31 articles.

1. Stock price prediction using technical indicators: A predictive model using optimal deep learning;International Journal of Recent Technology and Engineering (IJRTE) ISSN,2019

2. Technical analysis strategy optimization using a machine learning approach in stock market indices;Knowledge-Based Systems,2021

3. Convolutional neural network for stock trading using technical indicators;Automated Software Engineering,2022

4. Artificial neural networks based Indian stock market price prediction: Before and after demonetization;International Journal of Swarm Intelligence and Evolutionary Computation,2019

5. A hybrid stock trading framework integrating technical analysis with machine learning techniques;The Journal of Finance and Data Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3