Experimental validation of numerical simulations of free-surface flow within casting mould cavities

Author:

Bublík OndřejORCID,Lobovský Libor,Heidler Václav,Mandys Tomáš,Vimmr JanORCID

Abstract

PurposeThe paper targets on providing new experimental data for validation of the well-established mathematical models within the framework of the lattice Boltzmann method (LBM), which are applied to problems of casting processes in complex mould cavities.Design/methodology/approachAn experimental campaign aiming at the free-surface flow within a system of narrow channels is designed and executed under well-controlled laboratory conditions. An in-house lattice Boltzmann solver is implemented. Its algorithm is described in detail and its performance is tested thoroughly using both the newly recorded experimental data and well-known analytical benchmark tests.FindingsThe benchmark tests prove the ability of the implemented algorithm to provide a reliable solution when the surface tension effects become dominant. The convergence of the implemented method is assessed. The two new experimentally studied problems are resolved well by simulations using a coarse computational grid.Originality/valueA detailed set of original experimental data for validation of computational schemes for simulations of free-surface gravity-driven flow within a system of narrow channels is presented.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference50 articles.

1. Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios;Applied Mathematical Modelling,2013

2. The lattice Boltzmann equation: theory and applications;Physics Reports,1992

3. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems;Physical Review,1954

4. Curvature estimation from a volume-of-fluid indicator function for the simulation of surface tension and wetting with a free-surface lattice Boltzmann method;Physical Review E,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3