Analysis and comparison of boundary condition variants in the free‐surface lattice Boltzmann method

Author:

Schwarzmeier Christoph1ORCID,Rüde Ulrich12ORCID

Affiliation:

1. Chair for System Simulation Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany

2. ALGO‐COOP team CERFACS Toulouse Cedex France

Abstract

AbstractThe accuracy of the free‐surface lattice Boltzmann method (FSLBM) depends significantly on the boundary condition employed at the free interface. Ideally, the chosen boundary condition balances the forces exerted by the liquid and gas pressure. Different variants of the same boundary condition are possible, depending on the number and choice of the particle distribution functions (PDFs) to which it is applied. This study analyzes and compares four variants, in which (i) the boundary condition is applied to all PDFs oriented in the opposite direction of the free interface's normal vector, including or (ii) excluding the central PDF. While these variants overwrite existing information, the boundary condition can also be applied (iii) to only missing PDFs without dropping available data or (iv) to only missing PDFs but at least three PDFs as suggested in the literature. It is shown that neither variant generally balances the forces exerted by the liquid and gas pressure at the free surface. The four variants' accuracy was compared in five different numerical experiments covering various applications. These include a standing gravity wave, a rectangular and cylindrical dam break, a rising Taylor bubble, and a droplet impacting a thin pool of liquid. Overall, variant (iii) was substantially more accurate than the other variants in the numerical experiments performed in this study.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3