Numerical Simulation of Water and Mud Inrush Processes in Mountain Tunnels Using Coupled Lattice Boltzmann/Discrete Element Methods

Author:

Fan Zhanfeng12ORCID

Affiliation:

1. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

2. Sichuan Engineering Research Center for Mechanical Properties and Engineering Technology of Unsaturated Soils, Chengdu University, Chengdu 610106, China

Abstract

Investigating the mechanism of sudden water inrush and mudflow in mountain tunnels is crucial for implementing preventive measures. Tunnel excavation through a fault or fractured zone can easily trigger sudden water inrush or mudflow. In this paper, the coupled lattice Boltzmann method (LBM) and discrete element method (DEM) were employed to reproduce the process of water and mud inrush in mountain tunnels. The failure of tunnel mud burst and water inrush involves a fluid–solid coupling process. A two-dimensional Boltzmann method for fluids and DEM for particles were utilized, with the coupled LBM-DEM boundary adopting the immersed moving boundary method. For simulating the water inrush process, a numerical model was established to replicate the flow of water particles within karst pipelines, featuring dimensions of 7 cm length, 4 cm width, and consisting of 100 particles. Particles are transported through water flow to the outlet of karst pipelines under hydraulic gradient loading. When the hydraulic gradient exceeds 6, the Darcy velocity gradually tends to be constant. As for simulating the mud inrush process, a numerical model was developed with dimensions of 5 cm length and 4 cm height, incorporating 720 randomly generated particles. The results demonstrated the successful reproduction of the evolution process encompassing three consecutive stages of tunnel mud-burst failure: initiation, acceleration, and stabilization. The occurrence of mud inrush disasters is attributed to combined action involving disaster-causing geotechnical materials, groundwater pressure, and tunnel excavation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3