Effectiveness of multi-gated sequence model for the learning of kinematics and dynamics of an industrial robot

Author:

Singh Aditya,Pandey Padmakar,Nandi G.C.

Abstract

Purpose For efficient trajectory control of industrial robots, a cumbersome computation for inverse kinematics and inverse dynamics is needed, which is usually developed using spatial transformation using Denavit–Hartenberg principle and Lagrangian or Newton–Euler methods, respectively. The model is highly non-linear and needs to deal with uncertainties because of lack of accurate measurement of mechanical parameters, noise and non-inclusion of joint friction, which results in some inaccuracies in predicting accurate torque trajectories. To get a guaranteed closed form solution, the robot designers normally follow Pieper’s recommendation and compromise with the mechanical design. While this may be acceptable for the industrial robots where the aesthetic look is not that important, it is not for humanoid and social robots. To help solve this problem, this study aims to propose an alternative machine learning-based computational approach based on a multi-gated sequence model for finding appropriate mapping between Cartesian space to joint space and motion space to joint torque space. Design/methodology/approach First, the authors generate sufficient data required for the sequence model, using forward kinematics and forward dynamics by running N number of nested loops, where N is the number of joints of the robot. Subsequently, to develop a learning-based model based on sequence analysis, the authors propose to use long short-term memory (LSTM) and hence, train an LSTM model, the architecture details of which have been discussed in the paper. To make LSTM learning algorithms perform efficiently, the authors need to detect and eliminate redundant features from the data set, which the authors propose to do using an elegant statistical tool called Pearson coefficient. Findings To validate the proposed model, the authors have performed rigorous experiments using both hardware and simulation robots (Baxter/Anukul robot) available in their laboratory and KUKA simulation robot data set made available from Neural Learning for Robotics Laboratory. Through several characteristic plots, it has been shown that a sequence-based LSTM model of deep learning architecture with non-redundant features could help the robots to learn smooth and accurate trajectories more quickly compared to data sets having redundancy. Such data-driven modeling techniques can change the future course of direction of robotics research for solving the classical problems such as trajectory planning and motion planning for manipulating industrial as well as social humanoid robots. Originality/value The present investigation involves development of deep learning-based computation model, statistical analyses to eliminate redundant features, data creation from one hardware robot (Anukul) and one simulation robot model (KUKA), rigorously training and testing separately two computational models (specially configured two LSTM models) – one for learning inverse kinematics and one for learning inverse dynamics problem – and comparison of the inverse dynamics model with the state-of-the-art model. Hence, the authors strongly believe that the present paper is compact and complete to get published in a reputed journal so that dissemination of new ideas can benefit the researchers in the area of robotics.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference30 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3