Error Prediction for Large Optical Mirror Processing Robot Based on Deep Learning

Author:

Jin Zujin,Cheng Gang,Xu Shichang,Yuan Dunpeng

Abstract

Predicting the errors of a large optical mirror processing robot (LOMPR) is very important when studying a feedforward control error compensation strategy to improve the motion accuracy of the LOMPR. Therefore, an end trajectory error prediction model of a LOMPR based on a Bayesian optimized long short-term memory (BO-LSTM) was established. First, the batch size, number of hidden neurons and learning rate of LSTM were optimized using a Bayesian method. Then, the established prediction models were used to predict the errors in the X and Y directions of the spiral trajectory of the LOMPR, and the prediction results were compared with those of back-propagation (BP) neural network. The experimental results show that the training time of the BO-LSTM is reduced to 21.4 % and 15.2 %, respectively, in X and Y directions than that of the BP neural network. Moreover, the MSE, RMSE, and MAE of the prediction error in the X direction were reduced to 9.4 %, 30.5 %, and 31.8 %, respectively; the MSE, RMSE, and MAE of the prediction error in the Y direction were reduced to 9.6 %, 30.8 %, and 37.8 %, respectively. It is verified that the BO-LSTM prediction model could improve not only the accuracy of the end trajectory error prediction of the LOMPR but also the prediction efficiency, which provides a research basis for improving the surface accuracy of an optical mirror.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Learning Method for Robot Error Based on GWO-XGBoost Algorithm;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

2. Active Disturbance Rejection Control Algorithm for the Driven Branch Chain of a Polishing Robot;Strojniški vestnik - Journal of Mechanical Engineering;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3