Author:
Al-Qershi Osamah M.,Kwon Junbum,Zhao Shuning,Li Zhaokun
Abstract
PurposeFor the case of many content features, This paper aims to investigate which content features in video and text ads more contribute to accurately predicting the success of crowdfunding by comparing prediction models.Design/methodology/approachWith 1,368 features extracted from 15,195 Kickstarter campaigns in the USA, the authors compare base models such as logistic regression (LR) with tree-based homogeneous ensembles such as eXtreme gradient boosting (XGBoost) and heterogeneous ensembles such as XGBoost + LR.FindingsXGBoost shows higher prediction accuracy than LR (82% vs 69%), in contrast to the findings of a previous relevant study. Regarding important content features, humans (e.g. founders) are more important than visual objects (e.g. products). In both spoken and written language, words related to experience (e.g. eat) or perception (e.g. hear) are more important than cognitive (e.g. causation) words. In addition, a focus on the future is more important than a present or past time orientation. Speech aids (see and compare) to complement visual content are also effective and positive tone matters in speech.Research limitations/implicationsThis research makes theoretical contributions by finding more important visuals (human) and language features (experience, perception and future time). Also, in a multimodal context, complementary cues (e.g. speech aids) across different modalities help. Furthermore, the noncontent parts of speech such as positive “tone” or pace of speech are important.Practical implicationsFounders are encouraged to assess and revise the content of their video or text ads as well as their basic campaign features (e.g. goal, duration and reward) before they launch their campaigns. Next, overly complex ensembles may suffer from overfitting problems. In practice, model validation using unseen data is recommended.Originality/valueRather than reducing the number of content feature dimensions (Kaminski and Hopp, 2020), by enabling advanced prediction models to accommodate many contents features, prediction accuracy rises substantially.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献