A hierarchical visual model for robot automatic arc welding guidance

Author:

Chen Chen,Chen Tingyang,Cai Zhenhua,Zeng Chunnian,Jin Xiaoyue

Abstract

Purpose The traditional vision system cannot automatically adjust the feature point extraction method according to the type of welding seam. In addition, the robot cannot self-correct the laying position error or machining error. To solve this problem, this paper aims to propose a hierarchical visual model to achieve automatic arc welding guidance. Design/methodology/approach The hierarchical visual model proposed in this paper is divided into two layers: welding seam classification layer and feature point extraction layer. In the welding seam classification layer, the SegNet network model is trained to identify the welding seam type, and the prediction mask is obtained to segment the corresponding point clouds. In the feature point extraction layer, the scanning path is determined by the point cloud obtained from the upper layer to correct laying position error. The feature points extraction method is automatically determined to correct machining error based on the type of welding seam. Furthermore, the corresponding specific method to extract the feature points for each type of welding seam is proposed. The proposed visual model is experimentally validated, and the feature points extraction results as well as seam tracking error are finally analyzed. Findings The experimental results show that the algorithm can well accomplish welding seam classification, feature points extraction and seam tracking with high precision. The prediction mask accuracy is above 90% for three types of welding seam. The proposed feature points extraction method for each type of welding seam can achieve sub-pixel feature extraction. For the three types of welding seam, the maximum seam tracking error is 0.33–0.41 mm, and the average seam tracking error is 0.11–0.22 mm. Originality/value The main innovation of this paper is that a hierarchical visual model for robotic arc welding is proposed, which is suitable for various types of welding seam. The proposed visual model well achieves welding seam classification, feature point extraction and error correction, which improves the automation level of robot welding.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference27 articles.

1. Segnet: a deep convolutional encoder-decoder architecture for image segmentation;The International Journal of Advanced Manufacturing Technology,2017

2. Precise seam tracking in robotic welding by an improved image processing approach;The International Journal of Advanced Manufacturing Technology,2021

3. A robust visual servo control system for narrow seam double head welding robot;The International Journal of Advanced Manufacturing Technology,2014

4. Pavement crack detection and recognition using the architecture of segNet;Journal of Industrial Information Integration,2020

5. A low-cost vision system using a retrofitted robot for locating parts for welding process;Arabian Journal for Science and Engineering,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3