Multi-data sensor fusion framework to detect transparent object for the efficient mobile robot mapping

Author:

Singh Ravinder,Nagla Kuldeep Singh

Abstract

Purpose An efficient perception of the complex environment is the foremost requirement in mobile robotics. At present, the utilization of glass as a glass wall and automated transparent door in the modern building has become a highlight feature for interior decoration, which has resulted in the wrong perception of the environment by various range sensors. The perception generated by multi-data sensor fusion (MDSF) of sonar and laser is fairly consistent to detect glass but is still affected by the issues such as sensor inaccuracies, sensor reliability, scan mismatching due to glass, sensor model, probabilistic approaches for sensor fusion, sensor registration, etc. The paper aims to discuss these issues. Design/methodology/approach This paper presents a modified framework – Advanced Laser and Sonar Framework (ALSF) – to fuse the sensory information of a laser scanner and sonar to reduce the uncertainty caused by glass in an environment by selecting the optimal range information corresponding to a selected threshold value. In the proposed approach, the conventional sonar sensor model is also modified to reduce the wrong perception in sonar as an outcome of the diverse range measurement. The laser scan matching algorithm is also modified by taking out the small cluster of laser point (w.r.t. range information) to get efficient perception. Findings The probability of the occupied cells w.r.t. the modified sonar sensor model becomes consistent corresponding to diverse sonar range measurement. The scan matching technique is also modified to reduce the uncertainty caused by glass and high computational load for the efficient and fast pose estimation of the laser sensor/mobile robot to generate robust mapping. These stated modifications are linked with the proposed ALSF technique to reduce the uncertainty caused by glass, inconsistent probabilities and high load computation during the generation of occupancy grid mapping with MDSF. Various real-world experiments are performed with the implementation of the proposed approach on a mobile robot fitted with laser and sonar, and the obtained results are qualitatively and quantitatively compared with conventional approaches. Originality/value The proposed ASIF approach generates efficient perception of the complex environment contains glass and can be implemented for various robotics applications.

Publisher

Emerald

Reference27 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verification of Neural Networks’ Global Robustness;Proceedings of the ACM on Programming Languages;2024-04-29

2. A Survey on Recent Reflective Detection Methods in Simultaneous Localization and Mapping for Robot Applications;2023 6th International Symposium on Autonomous Systems (ISAS);2023-06-23

3. Experimental Analysis of the Behavior of Mirror-like Objects in LiDAR-Based Robot Navigation;Applied Sciences;2023-02-24

4. Maximal Robust Neural Network Specifications via Oracle-Guided Numerical Optimization;Lecture Notes in Computer Science;2023

5. A Glass Detection Method Based on Multi-sensor Data Fusion in Simultaneous Localization and Mapping;Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3