Seeding innovation: the role of internal and external digital data in agri-food product innovation

Author:

Frau MorenoORCID,Keszey TamaraORCID

Abstract

PurposeSince previous literature provides fragmented and conflicting results about the use of digital data for product innovation, the article aims to comprehensively explore and shed light on how agri-food firms utilise external and internal digital data sources when dealing with different product innovations, such as incremental, architecture and radical innovation.Design/methodology/approachThis paper adopts an exploratory multiple-case study and a theory-building process, focussing on the agri-food industry. We collected primary and secondary data from eight manufacturing companies.FindingsThe findings of this research show an empirical framework of six agri-food firms’ digital data utilisation behaviours: the supervisor, the passive supervisor, the developer, the passive developer, the pathfinder and the conjunction behaviour. These digital data utilisation behaviours vary according to a combination of data sources, such as internal data related to inside phenomenon measures (e.g. data generated by sensors installed in the production plan) or external data (e.g., market trends, overall sector sales), and innovation purposes.Practical implicationsThis article offers guiding principles that assist agri-food companies when utilising internal and external digital data sources for specific product innovation outcomes such as incremental, architectural and radical innovation.Originality/valueThe significance of external and internal data sources in stimulating product innovation has garnered substantial attention within academic discussions, highlighting the critical importance of analysing digital data for driving such innovation. Nonetheless, the predominant approach is to study a single innovation outcome through the lens of digital technology. In contrast, our study stands out by adopting a fundamental perspective on data sources, enabling a more nuanced explanation of the overall product innovation outcomes within the agri-food sector.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3