(How) do advanced data and analyses enable HR analytics success? A neo-configurational analysis

Author:

Strohmeier StefanORCID,Collet JulianORCID,Kabst Rüdiger

Abstract

PurposeEnabled by increased (“big”) data stocks and advanced (“machine learning”) analyses, the concept of human resource analytics (HRA) is expected to systematically improve decisions in human resource management (HRM). Since so far empirical evidence on this is, however, lacking, the authors' study examines which combinations of data and analyses are employed and which combinations deliver on the promise of improved decision quality.Design/methodology/approachTheoretically, the paper employs a neo-configurational approach for founding and conceptualizing HRA. Methodically, based on a sample of German organizations, two varieties (crisp set and multi-value) of qualitative comparative analysis (QCA) are employed to identify combinations of data and analyses sufficient and necessary for HRA success.FindingsThe authors' study identifies existing configurations of data and analyses in HRM and uncovers which of these configurations cause improved decision quality. By evidencing that and which combinations of data and analyses conjuncturally cause decision quality, the authors' study provides a first confirmation of HRA success.Research limitations/implicationsMajor limitations refer to the cross-sectional and national sample and the usage of subjective measures. Major implications are the suitability of neo-configurational approaches for future research on HRA, while deeper conceptualizing and researching both the characteristics and outcomes of HRA constitutes a core future task.Originality/valueThe authors' paper employs an innovative theoretical-methodical approach to explain and analyze conditions that conjuncturally cause decision quality therewith offering much needed empirical evidence on HRA success.

Publisher

Emerald

Subject

Management of Technology and Innovation,Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Business and International Management

Reference81 articles.

1. Human capital analytics: the winding road;Journal of Organizational Effectiveness: People and Performance,2017

2. HR and analytics: why HR is set to fail the big data challenge;Human Resource Management Journal,2016

3. Estimating non-response bias in mail surveys;Journal of Marketing Research,1977

4. Human capital analytics: why are we not there?;Journal of Organizational Effectiveness: People and Performance,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3