Improved neural network-based sensor fault detection and estimation strategy for an autonomous aerial vehicle

Author:

Ullah MatiORCID,Zhao Chunhui,Maqsood HamidORCID,Ul Hassan MahmoodORCID,Humayun MuhammadORCID

Abstract

PurposeThis paper aims to design an adaptive nonlinear strategy capable of timely detection and reconstruction of faults in the attitude’s sensors of an autonomous aerial vehicle with greater accuracy concerning other conventional approaches in the literature.Design/methodology/approachThe proposed scheme integrates a baseline nonlinear controller with an improved radial basis function neural network (IRBFNN) to detect different kinds of anomalies and failures that may occur in the attitude’s sensors of an autonomous aerial vehicle. An integral sliding mode concept is used as auto-tune weight update law in the IRBFNN instead of conventional weight update laws to optimize its learning capability without computational complexities. The simulations results and stability analysis validate the promising contributions of the suggested methodology over the other conventional approaches.FindingsThe performance of the proposed control algorithm is compared with the conventional radial basis function neural network (RBFNN), multi-layer perceptron neural network (MLPNN) and high gain observer (HGO) for a quadrotor vehicle suffering from various kinds of faults, e.g. abrupt, incipient and intermittent. From the simulation results obtained, it is found that the proposed algorithm’s performance in faults detection and estimation is relatively better than the rest of the methodologies.Practical implicationsFor the improvement in the stability and safety of an autonomous aerial vehicle during flight operations, quick identification and reconstruction of attitude’s sensor faults and failures always play a crucial role. Efficient fault detection and estimation scheme are considered indispensable for an error-free and safe flight mission of an autonomous aerial vehicle.Originality/valueThe proposed scheme introduces RBFNN techniques to detect and estimate the quadrotor attitude’s sensor faults and failures efficiently. An integral sliding mode effect is used as the network’s backpropagation law to automatically modify its learning parameters accordingly, thereby speeding up the learning capabilities as compared to the conventional neural network backpropagation laws. Compared with the other investigated techniques, the proposed strategy achieve remarkable results in the detection and estimation of various faults.

Publisher

Emerald

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3