Metrics development and modelling the mixed reality and digital twin adoption in the context of Industry 4.0

Author:

Sepasgozar Samad M.E.,Ghobadi Mohsen,Shirowzhan Sara,Edwards David J.ORCID,Delzendeh Elham

Abstract

PurposeThis paper aims to examine the current technology acceptance model (TAM) in the field of mixed reality and digital twin (MRDT) and identify key factors affecting users' intentions to use MRDT. The factors are used as a set of key metrics for proposing a predictive model for virtual, augmented and mixed reality (MR) acceptance by users. This model is called the extended TAM for MRDT adoption in the architecture, engineering, construction and operations (AECO) industry.Design/methodology/approachAn interpretivist philosophical lens was adopted to conduct an inductive systematic and bibliographical analysis of secondary data contained within published journal articles that focused upon MRDT acceptance modelling. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach to meta-analysis were adopted to ensure all key investigations were included in the final database set. Quantity indicators such as path coefficients, factor ranking, Cronbach’s alpha (a) and chi-square (b) test, coupled with content analysis, were used for examining the database constructed. The database included journal papers from 2010 to 2020.FindingsThe extant literature revealed that the most commonly used constructs of the MRDT–TAM included: subjective norm; social influence; perceived ease of use (PEOU); perceived security; perceived enjoyment; satisfaction; perceived usefulness (PU); attitude; and behavioural intention (BI). Using these identified constructs, the general extended TAM for MRDT in the AECO industry is developed. Other important factors such as “perceived immersion” could be added to the obtained model.Research limitations/implicationsThe decision to utilise a new technology is difficult and high risk in the construction project context, due to the complexity of MRDT technologies and dynamic construction environment. The outcome of the decision may affect employee performance, project productivity and on-site safety. The extended acceptance model offers a set of factors that assist managers or practitioners in making effective decisions for utilising any type of MRDT technology.Practical implicationsSeveral constraints are apparent due to the limited investigation of MRDT evaluation matrices and empirical studies. For example, the research only covers technologies which have been reported in the literature, relating to virtual reality (VR), augmented reality (AR), MR, DT and sensors, so newer technologies may not be included. Moreover, the review process could span a longer time period and thus embrace a fuller spectrum of technology development in these different areas.Originality/valueThe research provides a theoretical model for measuring and evaluating MRDT acceptance at the individual level in the AECO context and signposts future research related to MRDT adoption in the AECO industry, as well as providing managerial guidance for progressive AECO professionals who seek to expand their use of MRDT in the Fourth Industrial Revolution (4IR). A set of key factors affecting MRDT acceptance is identified which will help innovators to improve their technology to achieve a wider acceptance.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference68 articles.

1. Towards an understanding, through action research, of the socio-organizational issues impacting on mobile technology adoption and diffusion within a small-to-medium South African construction company;Systemic Practice and Action Research,2012

2. Predicting IoT service adoption towards smart mobility in Malaysia: SEM-neural hybrid pilot study;International Journal of Advanced Computer Science and Applications,2020

3. A bibliometric review of the status and emerging research trends in construction safety management technologies;International Journal of Construction Management,2020

4. Exploring virtual reality in construction, visualization and building performance analysis,2018

5. Integrating technology acceptance model with innovation diffusion theory: an empirical investigation on students' intention to use E-learning systems;IEEE Access,2019

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3