Mapping the global knowledge landscape of digital transformation in the AEC industry: a scientometric analysis

Author:

Wang Kaiyang

Abstract

PurposeIn recent decades, interest in digital transformation (DX) within the architecture, engineering, and construction (AEC) industry has significantly increased. Despite the existence of several literature reviews on DX research, there remains a notable lack of systematic quantitative and visual investigations into the structure and evolution of this field. This study aims to address this gap by uncovering the current state, key topics, keywords, and emerging areas in DX research specific to the AEC sector.Design/methodology/approachEmploying a holistic review approach, this study undertook a thorough and systematic analysis of the literature concerning DX in the AEC industry. Utilizing a bibliometric analysis, 3,656 papers were retrieved from the Web of Science spanning the years 1990–2023. A scientometric analysis was then applied to these publications to discern patterns in publication years, geographical distribution, journals, authors, citations, and keywords.FindingsThe findings identify China, the USA, and England as the leading contributors in the field of DX in AEC sector. Prominent keywords include “building information modeling”, “design”, “system”, “framework”, “adoption”, “model”, “safety”, “internet of things”, and “innovation”. Emerging areas of interest are “deep learning”, “embodied energy”, and “machine learning”. A cluster analysis of keywords reveals key research themes such as “deep learning”, “smart buildings”, “virtual reality”, “augmented reality”, “smart contracts”, “sustainable development”, “building information modeling”, “big data”, and “3D printing”.Originality/valueThis study is among the earliest to provide a comprehensive scientometric mapping of the DX field. The findings presented here have significant implications for both industry practitioners and the scientific community, offering a thorough overview of the current state, prominent keywords, topics, and emerging areas within DX in the AEC industry. Additionally, this research serves as an invaluable reference and guideline for scholars interested in this subject.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3