A human resources analytics and machine-learning examination of turnover: implications for theory and practice

Author:

Avrahami DanORCID,Pessach DanaORCID,Singer GonenORCID,Chalutz Ben-Gal HilaORCID

Abstract

PurposeWhat do antecedents of turnover tell us when examined using human resources (HR) analytics and machine-learning tools, and what are the respective theoretical and practical implications? Although the turnover literature is expansive, empirical evidence on turnover antecedents studied using data science tools remains limited.Design/methodology/approachTo help reinvigorate research in this field, the authors propose a novel examination of turnover antecedents—competencies, commitment, trust and cultural values—using big data tools to develop a granular, case-dependent measure of turnover.FindingsUsing archival data from 700,000 employees of a large organization collected over a period of ten years, the authors find that turnover is generally associated with varying levels of these antecedents. However, in more fine-grained analysis, their relation to turnover is contingent upon role, person and cultural background.Originality/valueThe authors discuss the implications on turnover and strategic HR research and the potential of Artificial Intelligence and machine-learning methods in the design and implementation of managerial and HR planning initiatives.

Publisher

Emerald

Subject

Management of Technology and Innovation,Organizational Behavior and Human Resource Management,Strategy and Management

Reference35 articles.

1. Analytical mindsets in turnover research;Journal of Organizational Behavior,2014

2. HR and analytics: why HR is set to fail the big data challenge;Human Resource Management Journal,2016

3. Heed, a missing link between trust, monitoring and performance in knowledge intensive teams;International Journal of Human Resource Management,2008

4. Special considerations for the acquisition and wrangling of big data;Organizational Research Methods,2018

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3