Modeling, simulation and coupling experiment for integrated passive wireless multi-parameters ceramic sensor

Author:

Wei Tanyong,Tan Qiulin,Luo Tao,Wu Guozhu,Tang Shun,Shen Dan-Dan,Li Chen,Xiong Jijun

Abstract

Purpose – The purpose of this paper is to propose a pressure-, temperature- and acceleration-sensitive structure-integrated inductor-capacitor (LC) resonant ceramic sensor to fulfill the measurement of multi-parameters, such as the measurement of pressure, temperature and acceleration, simultaneously in automotive, aerospace and aeronautics industries. Design/methodology/approach – The ceramic-based multi-parameter sensor was composed of three LC tanks, which have their resonant frequencies sensitive to pressure, temperature and acceleration separately. Two aspects from the specific sensitive structure design to the multiple signals reading technology are considered in designing the multi-parameter ceramic sensor. Theoretical analysis and ANSYS simulation are used in designing the sensitive structure, and MATLAB simulation and experiment are conducted to verify the feasibility of non-coverage of multi-readout signals. Findings – It is found that if the parameters of sensitive structure and layout of the LC tanks integrated into the sensor are proper, the implementation of a multi-parameter sensor could be feasible. Practical implications – The ceramic sensor proposed in the paper can measure pressure, temperature and acceleration simultaneously in harsh environments. Originality/value – The paper creatively proposes a pressure-, temperature- and acceleration-sensitive structure-integrated LC resonant ceramic sensor for harsh environments and verifies the feasibility of the sensor from sensitive structure design to multiple-signal reading.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3