Affiliation:
1. Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
Abstract
Parity–time (PT) symmetry challenges the long-held theoretical basis that only Hermitian operators correspond to observable phenomena in quantum mechanics. Non-Hermitian Hamiltonians satisfying PT symmetry also have a real-valued energy spectrum. In the field of inductor–capacitor (LC) passive wireless sensors, PT symmetry is mainly used for improving performance in terms of multi-parameter sensing, ultrahigh sensitivity, and longer interrogation distance. For example, the proposal of both higher-order PT symmetry and divergent exceptional points can utilize a more drastic bifurcation process around exceptional points (EPs) to accomplish a significantly higher sensitivity and spectral resolution. However, there are still many controversies regarding the inevitable noise and actual precision of the EP sensors. In this review, we systematically present the research status of PT-symmetric LC sensors in three working areas: exact phase, exceptional point, and broken phase, demonstrating the advantages of non-Hermitian sensing concerning classical LC sensing principles.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献