Hexapod moving in complex terrains via a new adaptive CPG gait design

Author:

Chung Hung-Yuan,Hou Chun-Cheng,Hsu Sheng-Yen

Abstract

Purpose – This paper aims to use the Matsuoka’s neural oscillators as the basic units of central pattern generator (CPG), and to offer a new CPG architecture consisting of a dual neural CPG of circular three links responsible for oscillator phase adjustment, to which an external neural oscillator is added, which is responsible for oscillator amplitude adjustment, to control foot depth to balance itself when treading on an obstacle. Design/methodology/approach – It is equipped with a triaxial accelerometer and a triaxial gyroscope to obtain a real-time robot attitude, and to disintegrate the foot tilt in each direction as feedback signals to CPG to restore the robot’ horizontal attitude on an uneven terrain. The CPG controller is a distributed control method, with each foot controller consisting of a group of reciprocally coupling neural oscillators and sensors to generate different locomotion by different coupling patterns. Findings – The experiment results indicated that the gait design method succeeded in enabling a steady hexapod walking on a rugged terrain, the mode of response is such that adjustments can only be made when the tilt occurs. Practical implications – The overall control mechanism uses individual foot tilts as the feedback signal input to the neural oscillators to change the amplitude and compare against the reference oscillators of fixed amplitude to generate the foot height reference signals that can balance the body, and then convert the control signals, through a trajectory generator, to foot trajectories from which the actual rotation angle of servo motors can be obtained through inverse kinematics to achieve the effect of restoring the balance when traveling. Originality/value – The controller design based on the bionic CPG model has the ability to restore its balance when its body tilts. In addition to the model’s ability to control locomotion, from the response waveforms of this experiment, it can also be noticed that it can control the foot depth to balance itself when treading on an obstacle, and it can adapt to a changing environment. When the obstacle is removed, the robot can quickly regain its balance.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and invariably horizontal control for the parallel mobile rescue robot based on PSO-CPG algorithm;Robotica;2023-08-30

2. A Human Machine Interaction Control System for Bionic Robotic Fish Based on Gesture Recognition;2022 34th Chinese Control and Decision Conference (CCDC);2022-08-15

3. Motion Mode Switching of Navigation and Crawl Underwater Unmanned Vehicle Based on Star-shaped CPG;2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2022-08-08

4. Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning;Frontiers in Neurorobotics;2021-01-26

5. Locomotion Control and Gait Planning of a Novel Hexapod Robot Using Biomimetic Neurons;IEEE Transactions on Control Systems Technology;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3