Study on the influence of process parameters on high performance Ti-6Al-4V parts in laser powder bed fusion

Author:

Wang Peng,Chen Dongju,Fan Jinwei,Sun Kun,Wu Shuiyuan,Li Jia,Sun Yueqiang

Abstract

Purpose The purpose of this paper is to improve the performance and quality of Ti-6Al-4V fabricated by laser powder bed fusion. Design/methodology/approach Single-track experiments were conducted during the fabrication process to obtain the single tracks with excellent wettability to narrow the process parameter window. The effects of process parameters on the build surface, cross-section, relative density, defects, surface roughness, microstructure and mechanical properties of the parts were analyzed through multilayer fabrication experiments and surface optimization experiments. Findings The point distance has the greatest influence on the build surface of the fabricated parts, and the unmelted defects can be eliminated when the point distance is 35 µm. The relative density of the fabricated parts decreased with the increase of the point distance, and the hatch spacing has different characteristics with respect to the relative density of the fabricated parts under different laser powers. It was observed that the most of experimental groups with higher relative densities than 99%, and the highest density could reach 99.99%. The surface roughness can be reduced to less than 10 µm through remelting optimization. Originality/value The research results can provide theoretical support for scientific researchers and data support for engineers.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3