Mechanical Properties of Titanium/Nano-Fluorapatite Parts Produced by Laser Powder Bed Fusion

Author:

Wu Po-Kuan1ORCID,Lin Wei-Ting12,Lin Jia-Wei2,Tran Hong-Chuong2,Kuo Tsung-Yuan2ORCID,Chien Chi-Sheng1,Vo Vi-Long2,Lin Ru-Li2

Affiliation:

1. Department of Orthopaedics, Chi Mei Medical Center, No. 901 Zhonghua Rd., Yongkang District, Tainan 710, Taiwan

2. Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan

Abstract

Laser powder bed fusion (L-PBF) has attracted great interest in recent years due to its ability to produce intricate parts beyond the capabilities of traditional manufacturing processes. L-PBF processed biomedical implants are usually made of commercial pure titanium (CP-Ti) or its alloys. However, both alloys are naturally bio-inert, and thus reduce the formation of apatite as implants are put into the human body. Accordingly, in an attempt to improve the bioactivity of the materials used for making orthopedic implants, the present study decomposed fluorapatite material (FA, (Ca10(PO4)6F2)) into the form of nano-powder and mixed this powder with CP-Ti powder in two different ratios (99%Ti + 1%FA (Ti-1%FA) and 98%Ti + 2%FA (Ti-2%FA)) to form powder material for the L-PBF process. Experimental trials were conducted to establish the optimal processing conditions (i.e., laser power, scanning speed and hatching space) of the L-PBF process for the two powder mixtures and the original CP-Ti powder with no FA addition. The optimal parameters were then used to produce tensile test specimens in order to evaluate the mechanical properties of the different samples. The hardness of the various samples was also examined by micro-Vickers hardness tests. The tensile strength of the Ti-1%FA sample (850 MPa) was found to be far higher than that of the CP-Ti sample (513 MPa). Furthermore, the yield strength of the Ti-1%FA sample (785 MPa) was also much higher than that of the CP-Ti sample (472 MPa). However, the elongation of the Ti-1%FA sample (6.27 %) was significantly lower than that of the CP-Ti sample (16.17%). Finally, the hardness values of the Ti-1%FA and Ti-2%FA samples were around 63.8% and 109.4%, respectively, higher than that of the CP-Ti sample.

Funder

National Science and Technology Council

Chi Mei Medical Center,

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3