Design for additive manufacturing of topology-optimized structures based on deep learning and transfer learning

Author:

Mohseni Maede,Khodaygan Saeed

Abstract

Purpose This paper aims to improve the manufacturability of additive manufacturing (AM) for topology-optimized (TO) structures. Enhancement of manufacturability focuses on modifying geometric constraints and classifying the building orientation (BO) of AM parts to reduce stresses and support structures (SSs). To this end, artificial intelligence (AI) networks are being developed to automate design for additive manufacturing (DfAM). Design/methodology/approach This study considers three geometric constraints for their correction by convolutional autoencoders (CAEs) and transfer learning (TL). Furthermore, BOs of AM parts are classified using generative adversarial (GAN) and classification networks to reduce the SS. To verify the results, finite element analysis (FEA) is performed to compare the stresses of modified components with the original ones. Moreover, one sample is produced by the laser-based powder bed fusion (LB-PBF) in the BO predicted by the AI to observe its SSs. Findings CAE and TL resulted in promoting the manufacturability of TO components. FEA demonstrated that enhancing manufacturability leads to a 50% reduction in stresses. Additionally, training GAN and pre-training the ResNet-18 resulted in 80%, 95% and 96% accuracy for training, validation and testing. The production of a sample with LB-PBF demonstrated that the predicted BO by ResNet-18 does not require SSs. Originality/value This paper provides an automatic platform for DfAM of TO parts. Consequently, complex TO parts can be designed most feasibly and manufactured by AM technologies with minimal material usage, residual stresses and distortions.

Publisher

Emerald

Reference71 articles.

1. An efficient 3D topology optimization code written in matlab;Structural and Multidisciplinary Optimization,2014

2. Efficient topology optimization in MATLAB using 88 lines of code;Structural and Multidisciplinary Optimization,2011

3. Search for the optimal build direction in additive manufacturing technologies: a review;Journal of Manufacturing and Materials Processing,2020

4. Arjovsky, M., Chintala, S. and Bottou, L. (2017), “Wasserstein GAN”, available at: http://arxiv.org/abs/1701.07875

5. Learning deep architectures for AI;Foundations and Trends® in Machine Learning,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3