Analysis of dynamic characteristics of spiral groove liquid film seal considering cavitation

Author:

Hao Mu-ming,Yang Wen-jing,Cao Heng-chao,Xu Lu-shuai,Wang Yun-lei,Li Yong-fan

Abstract

Purpose The purpose of this paper is to investigate the dynamic characteristics of a spiral groove liquid film seal considering the effect of cavitation. Design/methodology/approach A mathematical model of a spiral groove liquid film seal was established based on the mass-conserving Jakobsson–Floberg–Olsson cavitation boundary condition. The film rupture and film reformation boundaries were assumed to be unchanged under infinitesimal perturbation conditions. Governing equations under steady and perturbed states were solved by the finite element method, and then the dynamic characteristics of the spiral groove liquid film seal were theoretically investigated considering the effect of cavitation. Findings The results indicate that dynamic coefficients considering cavitation are smaller than those neglecting cavitation. The difference value is consistent with the change in cavitation area. The liquid film seal does not suffer axial instability whether considering cavitation, but its angular instability is more likely to occur when cavitation is considered. Originality/value For liquid lubricated non-contacting mechanical seals, the dynamic characteristics considering cavitation are investigated. The results are expected to provide a theoretical basis for improving the design method of liquid film seals.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference25 articles.

1. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations;Computer Methods in Applied Mechanics and Engineering,1982

2. Research on cavitation regions of upstream pumping mechanical seal based on dynamic mesh technique;Advances in Mechanical Engineering,2014

3. Cavitation in bearings;Annual Review of Fluid Mechanics,2003

4. An analysis of mechanical face seal vibrations;Journal of Lubrication Technology,1981

5. A critical assessment of surface texturing for friction and wear improvement;Wear,2017

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3