Affiliation:
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Abstract
Based on Laplace transform and Hurwitz stability criterion, the system characteristic equation and algebraic stability criterion of the two degree-of-freedom angular free vibration of dry gas seal are derived. The effects of rotational inertia, stiffness and damping parameters on the angular free vibration stability of dry gas seal are analyzed by using the root locus method and the concept of the closed-loop dominant pole. The results show that the constraint condition of rotational inertia is the most demanding of all stability conditions. Both the angular main damping and main stiffness are not simply the larger the better, but there are preferred values in the interval greater than the stability threshold. The approach of the absolute value of the cross coefficient to zero is beneficial to the suppression of angular free vibration. There is a threshold of rotational inertia, which makes the cross stiffness change from having only the lower limit value to both the upper and lower critical values at the same time.
Funder
Natural Science Foundation of Zhejiang Province
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献