Dynamic characteristics of a non-Newtonian lubrication mechanical seal with herringbone grooves considering cavitation effect

Author:

Liu Fuyu1ORCID,Yu Bo2ORCID,Li Yongfan1,Ren Baojie3,Hao Muming1,Sun Xinhui1,Wang Zengli1ORCID,Li Zhentao4ORCID

Affiliation:

1. College of New Energy, China University of Petroleum (East China), Qingdao, China

2. Xi’an Aerospace Propulsion Institute, China Aerospace Science and Technology Corporation, Xi’an, China

3. Dongying Haisen Sealing Technology Co., Ltd, Dongying, China

4. Department of Mechanical and Control Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, China

Abstract

This research investigated the effect of lubricant's non-Newtonian properties on dynamic characteristics of a herringbone grooved liquid film seal (HG-LFS) considering cavitation. A modified steady-state perturbation Reynolds equation of the non-Newtonian was derived. Visualized experiments were conducted to verify the accuracy of calculations. The non-Newtonian effect on stiffness, cavitation, damping coefficients, and other sealing performance of the liquid film seal at different velocity, pressure and film thickness were discussed and analyzed. The results indicate that the seal has larger stiffness and damping coefficients with the dilatant lubricant, the cavitation can be inhibited by the shearing-thinning lubricant, and the impact of non-Newtonian on the seal stability decreases with the increase of film thickness. This study would contribute to the design and theoretical research of liquid film seals.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective optimization of surface texture shape in fluid mechanical face seals using mass-conserving cavitation boundary condition;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2024-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3