Multi-objective optimization of surface texture shape in fluid mechanical face seals using mass-conserving cavitation boundary condition

Author:

Li Yulong1ORCID,He Yongyong1,Luo Jianbin1

Affiliation:

1. State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, PR China

Abstract

Surface texture shape significantly influences the tribological and sealing properties of fluid mechanical face seals. Considering that it is a contradiction to simultaneously improve load capacity and reduce leakage, a numerical multi-objective optimization model is proposed herein to improve the load-carrying capacity while reducing the volume leakage rate via texture shape optimization. The mass-conserving cavitating boundary condition and the non-dominated sorting genetic algorithm II are employed for the optimization. The numerical results indicate that the optimal texture shape is spiral-like under the lowest volume leakage rate, which becomes an asymmetric flat-front chevron with increasing load-carrying capacity and volume leakage rate. The optimal shape outperforms four regular shapes (all obtained by multi-objective optimization) at different rotation speeds and sealing pressures. The cavitation within the optimal shape ensures zero leakage in fluid face seals. The comprehensive performance of the texture shape obtained by multi-objective optimization is superior to that obtained by single-objective optimization.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3