Condition monitoring of aluminium electrolytic capacitors using accelerated life testing

Author:

Bhargava Cherry,Banga Vijay Kumar,Singh Yaduvir

Abstract

Purpose An electrolytic capacitor is extensively used as filtering devices in various power supplies and audio amplifiers. Low cost and higher value of capacitance make it more well known. As environmental stress and electrical parameters increase, capacitors degrade on accelerated pace. The paper aims to discuss these issues. Design/methodology/approach This paper focusses on the impact of thermal stress on electrolytic capacitors using accelerated life testing technique. The failure time was calculated based on the change in capacitance, equivalent series resistance and weight loss. The experimental results are compared with the outcome of already available life monitoring methods, and the accuracy level of these methods is accessed. Findings The results of all the three methods are having maximum 55 per cent accuracy. To enhance the accuracy level of theoretical methods, modifications have been suggested. A new method has been proposed, whose outcome is 92 per cent accurate with respect to experimentally obtained outcomes. Practical implications To assess the capacitor’s reliability using an experimental and modified theoretical method, failure prediction can be done before it actually fails. Originality/value A new method has been proposed to access the lifetime of capacitor.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference20 articles.

1. Analysis of optimal accelerated life test plans for periodic inspection: the case of exponentiated Weibull failure model;International Journal of Quality & Reliability Management,2006

2. Failure prediction and health prognostics of electronic components: a review,2014

3. High temperature reliability testing of aluminum and tantalum electrolytic capacitors;Microelectronics Reliability,2004

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3