Power analysis approach and its application to IP-based SoC design

Author:

Durrani Yaseer Arafat,Riesgo Teresa,Khan Muhammad Imran,Mahmood Tariq

Abstract

Purpose Low-power consumption has become an important issue that cannot be ignored in System-on-Chip (SoC) design. The key challenge encountered by system design is how to maintain balance between the estimation accuracy and speed. This paper aims at demonstrating an accurate and fast power estimation technique. Design/methodology/approach The methodology adopted in the paper is to use input patterns with the predefined statistical characteristics which helps to analyze the average power consumption of the different intellectual-property (IP) cores and the interconnects/buses in SoC design. Similarly the paper has implemented Genetic algorithm (GA) to generate sequences of input signals during the power estimation procedure. Findings The GA concurrently optimizes the input signal characteristics that influence the final solution of the pattern. In addition to that, a Monte-Carlo zero-delay simulation is also performed for individual IP core and bus at high-level. By the simple addition of these cores/buses, power is predicted by a novel macro-model function. In experiments, the average error is estimated at 13.84%. Research limitations/implications To present the research findings with clarity and to avoid complexities, the paper does not consider delay factors like glitches, jitter etc. in the power model. Practical implications The proposed methodology allowed accurate power/energy analysis of practical applications mapped onto Network-on-Chip (NoC) based Multiprocessors SoC platform. It enables the performance analysis of different design alternatives under the load imposed by complex applications. Originality/value This paper is an original contribution and the results demonstrate that our novel technique could be implemented to achieve fast and accurate power estimation in the early stage of any SoC design.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3