Exploring the impact of initial design techniques on area, timing, and power in technology mapped designs: A case study on 32-bit arithmetic logic unit

Author:

Alshortan Hammad H.,Almalaq Yasser,Khan Muhammad ImranORCID

Abstract

This research paper investigates the influence of different initial design techniques on the area, timing, and power aspects of technology-mapped designs. As a practical case study, we undertake the design and analysis of a 32-bit arithmetic logic unit (ALU) utilizing two distinct adder approaches. The ALU, a fundamental component of all processors, comprises three major units: the Adder responsible for signed and unsigned number addition and subtraction, the Logic unit which handles bitwise logical operations, and the Shifter unit facilitates arithmetic and logical shift operations. The two adder designs are based on the ripple carry method (ALU_RCA) and the Sklansky method (ALU_SKL), respectively. The design and analysis process involved utilizing established toolsets from Cadence, including NCSIM for simulation and verification, RTL Compiler for logic synthesis, static timing analysis and power estimation, and SOC encounter tool for floorplanning and layout. Through this investigation, we aim to shed light on the varying performance implications of different initial design approaches in technology-mapped designs.

Publisher

International Journal of Advanced and Applied Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3