Static characteristics of thermohydrodynamic journal bearing operating under lubricants containing nanoparticles

Author:

Kalakada Sreedhar Babu,Kumarapillai Prabhakaran Nair Nair,P K Rajendra Kumar

Abstract

Purpose – The purpose of this work is to investigate the static performance characteristics of thermohydrodynamic journal bearing operating under nanolubricants (lubricants containing per cent weight concentration of nanoparticles). Design/methodology/approach – Addition of nanoparticles in the lubricant increases lubricant viscosity. To study the effect of this variation on journal bearing, analytical models are developed for the relationship between viscosity, 0-0.5 per cent weight concentration of nanoparticles and temperature range of 300-900°C. To obtain pressure and temperature distribution, modified Reynolds and energy equations are solved by using the finite element method. The viscosity field (varies with temperature and per cent weight concentration of nanoparticles) is updated in these two equations by using the developed analytical model. The steady-state performance characteristics are computed for various values of eccentricity ratios for non-thermoviscous (viscosity of lubricant varies with per cent weight concentration of nanoparticles) and thermoviscous (viscosity of lubricant varies with per cent weight concentration of nanoparticles and temperature) cases. The lubricant and the nanoparticles used for the present work are SAE15W40, copper oxide (CuO), cerium oxide (CeO2) and aluminum oxide (Al2O3). Findings – The pressure and temperature distribution across the lubricant film in the clearance space of journal bearing and static performance characteristics are calculated. Originality/value – The computed results show that addition of nanoparticles in the lubricant influences the performance characteristics considerable in thermoviscous case than non-thermoviscous case.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3