Elasto-hydrodynamic lubrication analysis of a porous misaligned crankshaft bearing operating with nanolubricants

Author:

Hamel Reda,Lahmar Mustapha,Bou-Saïd BenyebkaORCID

Abstract

In this paper, the combined effects of the characteristic size and concentration of inorganic fullerene-like tungsten disulphide nanoparticles (IF-WS2 NPs) or molybdenum disulphide nanoparticles (IF-MoS2 NPs) on the nonlinear dynamic behaviour of a gasoline engine crankshaft bearing subject to an arbitrary force torsor (effective applied force and moment vector) are theoretically and numerically investigated using the V. K. Stokes micro-continuum theory. These NPs are the most common additives for lubrication purposes due to their excellent tribological characteristics along with their effect on reducing friction and wear. It is assumed that the journal (crankshaft) currently made of a forged steel is rigid and the main bearing consists of a thin poroelastic liner made of low elastic modulus materials like Babbitt metals fixed in a stiff housing as defined by ASTM B23-00. The Krieger-Dougherty law is included in the proposed EHD model to account for the viscosity variation with respect to the volume fraction of nanoparticles dispersed in the base lubricant. On the other hand, the characteristic size of nanomaterials is introduced by a new material entity, denoted l, which is responsible for a couple-stress property. The Reynolds equation is derived in transient conditions and modified to account for the size of nanoparticles and the bearing-liner permeability property. For an arbitrary force torsor, the hydrodynamic pressure distribution, the squeeze film velocities, and the misalignment angular velocities are determined simultaneously by solving the discretized Reynolds equation and the equilibrium equations with the damped Newton-Raphson iterative method at each crank angle step. The crankshaft center trajectories in three sections of the main journal axis as well as the misalignment angles are deduced from the squeeze film velocities and the misalignment angular velocities by means of a Runge-Kutta scheme. According to the obtained results, the combined effects of the size and concentration of fullerene-like nanoparticles on the dynamic behavior of a compliant dynamically loaded crankshaft bearing operating with dynamic misalignment are significant and cannot be overlooked.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Reference52 articles.

1. Automotive tribology overview of current advances and challenges for the future

2. Tribology of diamond-like carbon films: recent progress and future prospects

3. Joly-Pottuz L., Martin J.M., Dassenoy F., Schuffenhauer C., Tenne R., Fleischer, Inorganic fullerene-like NPs as new lubricant additives, WTC 2005, Washington, USA

4. Joly-Pottuz L., Lubricant NPs with closed structure, PhD thesis (French), Université de Lyon, Ecole Centrale de Lyon, France, 2005

5. Lahouij I., Lubrication mechanisms of inorganic fullerene-like NPs: multi-scale approach, PhD thesis (French), Université de Lyon, Ecole Centrale de Lyon, 2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3