Effects of geometrical parameters on thermohydrodynamic performance of a bearing operating with nanoparticle additive oil

Author:

Dal Abdurrahim,Sahin Mahir,Kilic Mustafa

Abstract

Purpose Bearing performance characteristics, such as stiffness and load capacity, are related to the viscosity of the fluid circulating through the gap. Nanoparticle additives in lubricant are one way to enhance of the viscosity. This study aims to investigate the effect of nanoparticle additives on the thermohydrodynamic performance of journal bearing with different bearing parameters. Design/methodology/approach The temperature distribution is modeled using a three-dimensional energy equation. The velocity components are calculated on the pressure distribution governed by Dowson’s equation. Moreover, the heat transfer between the journal and lubricant is modeled with Fourier heat conduction equation. On the other hand, the viscosity equation is derived for Al2O3 nanoparticles as a function of the volume ratio and the temperature. An algorithm based on the finite difference method is developed, and a serial simulation is performed for different parameters and different volume ratio of nanoparticle. Findings With the increase in the nanoparticle volume ratio, the maximum temperature decreases for the lower clearance values, but the addition of the nanoparticle influence on the maximum temperature reverses when the clearance grows up. The nanoparticle additives increase further the maximum temperature for higher values of L/D ratios. Moreover, the effects of the nanoparticle additives on the pressure are stronger at high eccentricity ratios for all bearing parameters. Originality/value This paper provides valuable design parameters for journal bearing with lubricant containing the nanoparticle additives.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3