A fault-tolerant design for a digital comparator based on nano-scale quantum-dotcellular automata

Author:

Huang Wenhua,Ren Juan,Jiang Jinglong,Cheng J.

Abstract

Purpose Quantum-dot Cellular Automata (QCA) is a new nano-scale transistor-less computing model. To address the scaling limitations of complementary-metal-oxide-semiconductor technology, QCA seeks to produce general computation with better results in terms of size, switching speed, energy and fault-tolerant at the nano-scale. Currently, binary information is interpreted in this technology, relying on the distribution of the arrangement of electrons in chemical molecules. Using the coplanar topology in the design of a fault-tolerant digital comparator can improve the comparator’s performance. This paper aims to present the coplanar design of a fault-tolerant digital comparator based on the majority and inverter gate in the QCA. Design/methodology/approach As the digital comparator is one of the essential digital circuits, in the present study, a new fault-tolerant architecture is proposed for a digital comparator based on QCA. The proposed coplanar design is realized using coplanar inverters and majority gates. The QCADesigner 2.0.3 simulator is used to simulate the suggested new fault-tolerant coplanar digital comparator. Findings Four elements, including cell misalignment, cell missing, extra cell and cell dislocation, are evaluated and analyzed in QCADesigner 2.0.3. The outcomes of the study demonstrate that the logical function of the built circuit is accurate. In the presence of a single missed defect, this fault-tolerant digital comparator architecture will achieve 100% fault tolerance. Also, this comparator is above 90% fault-tolerant under single-cell displacement faults and is above 95% fault-tolerant under single-cell missing defects. Originality/value A novel structure for the fault-tolerant digital comparator in the QCA technology was proposed used by coplanar majority and inverter. Also, the performance metrics and obtained results establish that the coplanar design can be used in the QCA circuits to produce optimized and fault-tolerant circuits.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference47 articles.

1. Optimized design and performance analysis of novel comparator and full adder in nanoscale;Cogent Engineering,2016

2. An effective nano design of demultiplexer architecture based on coplanar quantum-dot cellular automata;IET Circuits, Devices & Systems,2021

3. Multi-objective energy management in a micro-grid;Energy Reports,2018

4. A novel design of cascading serial bit-stream magnitude comparator using qca,2014

5. Modal based analysis of binary adders with fault tolerance using QCA in marine applications,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3