System dynamics modeling of design and build construction projects

Author:

Chritamara S.,Ogunlana S.O.,Bach N.L.

Abstract

Design and build (D/B) construction methods have gained more importance in recent years for their potential advantages in improving project performance. There are, however, a number of problems that are commonplace in D/B procurement, which, when they interact with each other, can lead to project time and cost overrun problems. The most important among them are design changes, together with communication and coordination lapses among concerned parties. Past research has focused only on the characteristics of the traditional construction, or separate sub‐systems such as different phases or human resource input to projects. An attempt is made in this paper to improve D/B project time and cost performance. A generic system dynamics model is developed that incorporates major sub‐systems and their relationships inherent in D/B constructions projects. It is validated and calibrated for a typical large D/B infrastructure project using time and cost overrun problems experienced in Thailand. Extensive simulations with many policies, individually or in various combinations, show that improvement in time or cost can be made with proper policy combinations that reflect strong interactions between the whole design and build system and can be derived only if these interactions are accounted for. To achieve overall improvement in both time and cost, the combination of full overtime schedule, average material ordering, and fast track construction with moderate crashing of design is most appropriate. If cost is the focus, extending the construction schedule, combined with material ordering based on actual need, and design and build with traditional construction method is the best solution.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risk Perception-Based Project Contingency Management Framework;Systems;2024-03-13

2. Functionality: A Measure of Project Success;Measures of Sustainable Construction Projects Performance;2022-10-19

3. Dynamic Modeling for Analyzing Cost Overrun Risks in Residential Projects;ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering;2022-09

4. Socio-ecological risks management dynamic simulation in megaproject development of the Edinburgh Tram Network;International Journal of Building Pathology and Adaptation;2022-08-30

5. Infrastructure Projects in Sub Saharan Africa, Sensitivity to Political Risk;2022 IEEE 28th International Conference on Engineering, Technology and Innovation (ICE/ITMC) & 31st International Association For Management of Technology (IAMOT) Joint Conference;2022-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3