Real-time imaging of acoustic waves in bulk materials with X-ray microscopy

Author:

Holstad Theodor S.1ORCID,Dresselhaus-Marais Leora E.234ORCID,Ræder Trygve Magnus1,Kozioziemski Bernard4,Driel Tim van3,Seaberg Matthew3,Folsom Eric4ORCID,Eggert Jon H.4,Knudsen Erik Bergbäck1,Nielsen Martin Meedom1ORCID,Simons Hugh1,Haldrup Kristoffer1,Poulsen Henning Friis1

Affiliation:

1. Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark

2. Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305

3. SLAC National Accelerator Laboratory, Menlo Park, CA 94025-7015

4. Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-9234

Abstract

The dynamics of lattice vibrations govern many material processes, such as acoustic wave propagation, displacive phase transitions, and ballistic thermal transport. The maximum velocity of these processes and their effects is determined by the speed of sound, which therefore defines the temporal resolution (picoseconds) needed to resolve these phenomena on their characteristic length scales (nanometers). Here, we present an X-ray microscope capable of imaging acoustic waves with subpicosecond resolution within mm-sized crystals. We directly visualize the generation, propagation, branching, and energy dissipation of longitudinal and transverse acoustic waves in diamond, demonstrating how mechanical energy thermalizes from picosecond to microsecond timescales. Bulk characterization techniques capable of resolving this level of structural detail have previously been available on millisecond time scales—orders of magnitude too slow to capture these fundamental phenomena in solid-state physics and geoscience. As such, the reported results provide broad insights into the interaction of acoustic waves with the structure of materials, and the availability of ultrafast time-resolved dark-field X-ray microscopy opens a vista of new opportunities for 3D imaging of materials dynamics on their intrinsic submicrosecond time scales.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The master key: structural science in unlocking functional materials advancements;Journal of Applied Crystallography;2024-05-24

2. Dynamics of stress propagation in anharmonic crystals: MD simulations;Modelling and Simulation in Materials Science and Engineering;2024-05-13

3. Simulations of dislocation contrast in dark-field X-ray microscopy;Journal of Applied Crystallography;2024-03-21

4. Simultaneous bright- and dark-field X-ray microscopy at X-ray free electron lasers;Scientific Reports;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3