Dynamics of stress propagation in anharmonic crystals: MD simulations

Author:

Kozioł ZbigniewORCID

Abstract

Abstract Anharmonic inter-atomic potential | x | n , n > 1, has been used in molecular dynamics (MD) simulations of stress dynamics of FCC oriented crystal. The model of the chain of masses and springs is found as a convenient and accurate description of simulation results, with masses representing the crystallographic planes. The dynamics of oscillations of two planes is found analytically to be given by Euler’s beta functions, and its scaling with non-linearity parameter and amplitude of oscillations, or applied shear pressure is discussed on examples of time dependencies of displacements, velocities, and forces acting on masses (planes). The dynamics of stress penetration from the surface of the sample with multiply-planes (an anharmonic crystal) towards its interior is confirmed to be given exactly as a series of Bessel functions, when n = 2 (Schrödinger and Pater solutions). When n 2 the stress dynamics (wave propagation) in bulk material remains qualitatively of the same nature as in the harmonic case. In particular, results suggest that the quasi-linear relationship between frequency and the wave number is preserved. The speed of the transverse sound component, dependent on sound wave amplitude, is found to be a strongly decreasing function of n. The results are useful in the analysis of any MD simulations under pressure, as they help to understand the dynamics of pressure retarded effects, as well as help design the proper methodology of performing MD simulations in cases such as, for instance, studies of the dynamics of dislocations.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3