Bayesian interpolation with deep linear networks

Author:

Hanin Boris1ORCID,Zlokapa Alexander23ORCID

Affiliation:

1. Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08540

2. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

3. Google Quantum AI, Venice, CA 90291

Abstract

Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory. We give here a complete solution in the special case of linear networks with output dimension one trained using zero noise Bayesian inference with Gaussian weight priors and mean squared error as a negative log-likelihood. For any training dataset, network depth, and hidden layer widths, we find non-asymptotic expressions for the predictive posterior and Bayesian model evidence in terms of Meijer-G functions, a class of meromorphic special functions of a single complex variable. Through novel asymptotic expansions of these Meijer-G functions, a rich new picture of the joint role of depth, width, and dataset size emerges. We show that linear networks make provably optimal predictions at infinite depth: the posterior of infinitely deep linear networks with data-agnostic priors is the same as that of shallow networks with evidence-maximizing data-dependent priors. This yields a principled reason to prefer deeper networks when priors are forced to be data-agnostic. Moreover, we show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth, elucidating the salutary role of increased depth for model selection. Underpinning our results is a novel emergent notion of effective depth, given by the number of hidden layers times the number of data points divided by the network width; this determines the structure of the posterior in the large-data limit.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference57 articles.

1. Scaling description of generalization with number of parameters in deep learning

2. J. Kaplan et al . Scaling laws for neural language models. arXiv [Preprint] (2020). http://arxiv.org/abs/2001.08361.

3. Y. Bahri E. Dyer J. Kaplan J. Lee U. Sharma Explaining neural scaling laws. arXiv [Preprint] (2021) http://arxiv.org/abs/2102.06701.

4. J. W. Rae et al . Scaling language models: Methods analysis& insights from training gopher. arXiv [Preprint] (2021). http://arxiv.org/abs/2112.11446.

5. S. Arora N. Cohen N. Golowich W. Hu “A convergence analysis of gradient descent for deep linear neural networks” in ICLR (2019).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3