Efficient automatic design of robots

Author:

Matthews David1ORCID,Spielberg Andrew2ORCID,Rus Daniela2,Kriegman Sam1ORCID,Bongard Josh3

Affiliation:

1. Center for Robotics and Biosystems, Northwestern University, Evanston, IL 60208

2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

3. Department of Computer Science, University of Vermont, Burlington, VT 05405

Abstract

Robots are notoriously difficult to design because of complex interdependencies between their physical structure, sensory and motor layouts, and behavior. Despite this, almost every detail of every robot built to date has been manually determined by a human designer after several months or years of iterative ideation, prototyping, and testing. Inspired by evolutionary design in nature, the automated design of robots using evolutionary algorithms has been attempted for two decades, but it too remains inefficient: days of supercomputing are required to design robots in simulation that, when manufactured, exhibit desired behavior. Here we show de novo optimization of a robot’s structure to exhibit a desired behavior, within seconds on a single consumer-grade computer, and the manufactured robot’s retention of that behavior. Unlike other gradient-based robot design methods, this algorithm does not presuppose any particular anatomical form; starting instead from a randomly-generated apodous body plan, it consistently discovers legged locomotion, the most efficient known form of terrestrial movement. If combined with automated fabrication and scaled up to more challenging tasks, this advance promises near-instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks.

Funder

Schmidt Family Foundation

DNI | Intelligence Advanced Research Projects Activity

DOD | Defense Advanced Research Projects Agency

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational synthesis of locomotive soft robots by topology optimization;Science Advances;2024-07-26

2. A non-cubic space-filling modular robot;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Reinforcement learning for freeform robot design;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. AI-Assisted Intelligent Humanoid Robot;Transactions of the Indian National Academy of Engineering;2024-03-30

5. Efficient automatic design of robots;Proceedings of the National Academy of Sciences;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3