Gray Matter Age Prediction as a Biomarker for Risk of Dementia

Author:

Wang Johnny,Knol Maria J.ORCID,Tiulpin AlekseiORCID,Dubost Florian,de Bruijne Marleen,Vernooij Meike W.,Adams Hieab H. H.,Ikram M. Arfan,Niessen Wiro J.,Roshchupkin Gennady V.ORCID

Abstract

The gap between predicted brain age using magnetic resonance imaging (MRI) and chronological age may serve as a biomarker for early-stage neurodegeneration. However, owing to the lack of large longitudinal studies, it has been challenging to validate this link. We aimed to investigate the utility of such a gap as a risk biomarker for incident dementia using a deep learning approach for predicting brain age based on MRI-derived gray matter (GM). We built a convolutional neural network (CNN) model to predict brain age trained on 3,688 dementia-free participants of the Rotterdam Study (mean age 66 ± 11 y, 55% women). Logistic regressions and Cox proportional hazards were used to assess the association of the age gap with incident dementia, adjusted for age, sex, intracranial volume, GM volume, hippocampal volume, white matter hyperintensities, years of education, and APOE ε4 allele carriership. Additionally, we computed the attention maps, which shows which regions are important for age prediction. Logistic regression and Cox proportional hazard models showed that the age gap was significantly related to incident dementia (odds ratio [OR] = 1.11 and 95% confidence intervals [CI] = 1.05–1.16; hazard ratio [HR] = 1.11, and 95% CI = 1.06–1.15, respectively). Attention maps indicated that GM density around the amygdala and hippocampi primarily drove the age estimation. We showed that the gap between predicted and chronological brain age is a biomarker, complimentary to those that are known, associated with risk of dementia, and could possibly be used for early-stage dementia risk screening.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3