Decoding MRI-informed brain age using mutual information

Author:

Li Jing,Lam Linda Chiu Wa,Lu HannaORCID

Abstract

Abstract Objective We aimed to develop a standardized method to investigate the relationship between estimated brain age and regional morphometric features, meeting the criteria for simplicity, generalization, and intuitive interpretability. Methods We utilized T1-weighted magnetic resonance imaging (MRI) data from the Cambridge Centre for Ageing and Neuroscience project (N = 609) and employed a support vector regression method to train a brain age model. The pre-trained brain age model was applied to the dataset of the brain development project (N = 547). Kraskov (KSG) estimator was used to compute the mutual information (MI) value between brain age and regional morphometric features, including gray matter volume (GMV), white matter volume (WMV), cerebrospinal fluid (CSF) volume, and cortical thickness (CT). Results Among four types of brain features, GMV had the highest MI value (8.71), peaking in the pre-central gyrus (0.69). CSF volume was ranked second (7.76), with the highest MI value in the cingulate (0.87). CT was ranked third (6.22), with the highest MI value in superior temporal gyrus (0.53). WMV had the lowest MI value (4.59), with the insula showing the highest MI value (0.53). For brain parenchyma, the volume of the superior frontal gyrus exhibited the highest MI value (0.80). Conclusion This is the first demonstration that MI value between estimated brain age and morphometric features may serve as a benchmark for assessing the regional contributions to estimated brain age. Our findings highlighted that both GMV and CSF are the key features that determined the estimated brain age, which may add value to existing computational models of brain age. Critical relevance statement Mutual information (MI) analysis reveals gray matter volume (GMV) and cerebrospinal fluid (CSF) volume as pivotal in computing individuals’ brain age. Key Points Mutual information (MI) interprets estimated brain age with morphometric features. Gray matter volume in the pre-central gyrus has the highest MI value for estimated brain age. Cerebrospinal fluid volume in the cingulate has the highest MI value. Regarding brain parenchymal volume, the superior frontal gyrus has the highest MI value. The value of mutual information underscores the key brain regions related to brain age. Graphical Abstract

Funder

Hong Kong Research Grant Council (RGC)-General Research Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3