Abstract
Electrochemical reduction of CO2to multicarbon products is a significant challenge, especially for molecular complexes. We report here CO2reduction to multicarbon products based on a Ru(II) polypyridyl carbene complex that is immobilized on an N-doped porous carbon (RuPC/NPC) electrode. The catalyst utilizes the synergistic effects of the Ru(II) polypyridyl carbene complex and the NPC interface to steer CO2reduction toward C2 production at low overpotentials. In 0.5 M KHCO3/CO2aqueous solutions, Faradaic efficiencies of 31.0 to 38.4% have been obtained for C2 production at −0.87 to −1.07 V (vs. normal hydrogen electrode) with 21.0 to 27.5% for ethanol and 7.1 to 12.5% for acetate. Syngas is also produced with adjustable H2/CO mole ratios of 2.0 to 2.9. The RuPC/NPC electrocatalyst maintains its activity during 3-h CO2-reduction periods.
Funder
U.S. Department of Energy
National Natural Science Foundation of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献