Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators

Author:

Yan Qinghong,Weyn-Vanhentenryck Sebastien M.,Wu Jie,Sloan Steven A.,Zhang Ye,Chen Kenian,Wu Jia Qian,Barres Ben A.,Zhang Chaolin

Abstract

Alternative splicing (AS) dramatically expands the complexity of the mammalian brain transcriptome, but its atlas remains incomplete. Here we performed deep mRNA sequencing of mouse cortex to discover and characterize alternative exons with potential functional significance. Our analysis expands the list of AS events over 10-fold compared with previous annotations, demonstrating that 72% of multiexon genes express multiple splice variants in this single tissue. To evaluate functionality of the newly discovered AS events, we conducted comprehensive analyses on central nervous system (CNS) cell type-specific splicing, targets of tissue- or cell type-specific RNA binding proteins (RBPs), evolutionary selection pressure, and coupling of AS with nonsense-mediated decay (AS-NMD). We show that newly discovered events account for 23–42% of all cassette exons under tissue- or cell type-specific regulation. Furthermore, over 7,000 cassette exons are under evolutionary selection for regulated AS in mammals, 70% of which are new. Among these are 3,058 highly conserved cassette exons, including 1,014 NMD exons that may function directly to control gene expression levels. These NMD exons are particularly enriched in RBPs including splicing factors and interestingly also regulators for other steps of RNA metabolism. Unexpectedly, a second group of NMD exons reside in genes encoding chromatin regulators. Although the conservation of NMD exons in RBPs frequently extends into lower vertebrates, NMD exons in chromatin regulators are introduced later into the mammalian lineage, implying the emergence of a novel mechanism coupling AS and epigenetics. Our results highlight previously uncharacterized complexity and evolution in the mammalian brain transcriptome.

Funder

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Institute of Mental Health

HHS | NIH | National Institute of Neurological Disorders and Stroke

Simons Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3