Regulation of longevity by depolarization-induced activation of PLC-β–IP3R signaling in neurons

Author:

Wong Ching-On,Karagas Nicholas E.ORCID,Jung Jewon,Wang Qiaochu,Rousseau Morgan A.,Chao Yufang,Insolera Ryan,Soppina Pushpanjali,Collins Catherine A.ORCID,Zhou Yong,Hancock John F.,Zhu Michael X.,Venkatachalam KartikORCID

Abstract

Mitochondrial ATP production is a well-known regulator of neuronal excitability. The reciprocal influence of plasma-membrane potential on ATP production, however, remains poorly understood. Here, we describe a mechanism by which depolarized neurons elevate the somatic ATP/ADP ratio inDrosophilaglutamatergic neurons. We show that depolarization increased phospholipase-Cβ (PLC-β) activity by promoting the association of the enzyme with its phosphoinositide substrate. Augmented PLC-β activity led to greater release of endoplasmic reticulum Ca2+via the inositol trisphosphate receptor (IP3R), increased mitochondrial Ca2+uptake, and promoted ATP synthesis. Perturbations that decoupled membrane potential from this mode of ATP synthesis led to untrammeled PLC-β–IP3R activation and a dramatic shortening ofDrosophilalifespan. Upon investigating the underlying mechanisms, we found that increased sequestration of Ca2+into endolysosomes was an intermediary in the regulation of lifespan by IP3Rs. Manipulations that either lowered PLC-β/IP3R abundance or attenuated endolysosomal Ca2+overload restored animal longevity. Collectively, our findings demonstrate that depolarization-dependent regulation of PLC-β–IP3R signaling is required for modulation of the ATP/ADP ratio in healthy glutamatergic neurons, whereas hyperactivation of this axis in chronically depolarized glutamatergic neurons shortens animal lifespan by promoting endolysosomal Ca2+overload.

Funder

HHS | NIH | National Institute on Aging

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3