Temporally controlled nervous system-to-gut signaling bidirectionally regulates longevity in C. elegans

Author:

Xu Lingxiu1,Han Chengxuan1,Chun Lei1,Xu X.Z. Shawn2,Liu Jianfeng1ORCID

Affiliation:

1. College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology

2. Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan

Abstract

The nervous system modulates aging by secreting signaling molecules to cell-nonautonomously regulate the physiological state of distal tissues such as the gut. However, the underlying mechanisms are not well understood. Here, using C. elegans as a model, we identified two distinct neuroendocrine signaling circuits through which motor neurons signal the gut in early life to shorten lifespan but in mid-late life to extend lifespan. Both circuits employ the same neurotransmitter acetylcholine (ACh), while recruiting two different gut ACh receptors ACR-6 and GAR-3 to regulate the transcription factor DAF-16 and HSF-1 in early and mid-late life, respectively. Strikingly, the gut expression of ACR-6 is restricted to early life, whereas that of GAR-3 is confined to mid-late life, providing a potential mechanism for the temporal control of the two circuits. These results identify a novel mechanism that empowers the nervous system to bidirectionally regulate longevity by differentially signaling the gut at different life stages.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3