Author:
Zhou Hongju,Wang Lijun,Liu Guifu,Meng Xiangbing,Jing Yanhui,Shu Xiaoli,Kong Xiangli,Sun Jian,Yu Hong,Smith Steven M.,Wu Dianxing,Li Jiayang
Abstract
Changes in human lifestyle and food consumption have resulted in a large increase in the incidence of type-2 diabetes, obesity, and colon disease, especially in Asia. These conditions are a growing threat to human health, but consumption of foods high in resistant starch (RS) can potentially reduce their incidence. Strategies to increase RS in rice are limited by a lack of knowledge of its molecular basis. Through map-based cloning of a RS locus in indica rice, we have identified a defective soluble starch synthase gene (SSIIIa) responsible for RS production and further showed that RS production is dependent on the high expression of the Waxya (Wxa) allele, which is prevalent in indica varieties. The resulting RS has modified granule structure; high amylose, lipid, and amylose–lipid complex; and altered physicochemical properties. This discovery provides an opportunity to increase RS content of cooked rice, especially in the indica varieties, which predominates in southern Asia.
Funder
Ministry of Science and Technology of the People's Republic of China
Chinese Academy of Sciences
the state key laboratory of plant genomics
the High-End Program of Foreign Experts and Chinese Academy of Sciences Senior International Scientist Visiting Professorship
Publisher
Proceedings of the National Academy of Sciences
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献